Based on research it appears that : ; : :
O(n) time is also refgf"red to as O(1) time 0 O(n) time would be that the time taken by the algorithm would be proportional to the length of
the array. l.e., the running time for an array of length 1000 would be half as the running time for an
« array of length 2000. RESEARCH ONLINE

@) oaity Coding Problem Constant Time Complexity, also known as O(1), refers to an algorithm's

efficiency where the running time remains independent of the input
size. It signifies the most efficient performance as the algorithm's
Good morning! Here's your coding interview problem for today. execution time does not increase with |arger inputs. RESEARCH ONLINE

This problem was asked by Google.
O(1) Constant time

Given an array of integers and a number k, where 1 <= k <= length of

the array, compute the maximum values of each subarray of length k. It denotes constant time complexity, which means that the running time of an algorithm
remains constant regardless of the size of the input. An algorithm with a time complexity

For example, given array = [10, 5, 2, 7, 8, 7] and k = 3, we should get: of O(1) performs a fixed number of operations and is not affected by the size of the
[10, 7, 8, 8], since: IRPUt: 200en2028 RESEARCH ONLINE

« 10 = max(10, 5, 2) - To comprehend the concept of O(1) complexity it's important to

e 5 2’ 7’ _Based on research, this has no recognize that the runtime of an algorithm, with this complexity remains

STma 52, 1) impact on O(n) time constant regardless of the input size. This characteristic is quite

¢ 8=max(2,7, 8) impressive as it indicates that the algorithm is highly efficient and its

e 8 =max(7, 8,7) performance remains consistent. RESEARCH ONLINE
Do this in O(n) time and O(k) space. You can Mo ut ar - e Optimizing Crucial Code Paths: When dealing with algorithms or software
plageiand you:donotnead to:storethepesults. You can/simply:prnt systems it's quite common to come across code paths that need to be
them out as you compute them.

Y E executed as swiftly, as possible. A used technique, in software

development involves identifying and fine tuning these code paths to
achieve a complexity of O(1).

At first instance, | am unsure of how to interpret this into the code.
| am presuming that if | traverse through the array for length k, | will be examining

(k-1) and (k+1). | can assume there will already be some proportionality (length of array with time taken processing) without taking any actions...| will be processing exactly sub-array
length 3.

| am unsure of any implementations that would hinder the time execution since | will be endeavour not to store results (as stated in the query). So there will be no overheads.

The complexity will be uniform since we are interested in maximum value in sub-array size of k within the given array.

